Borreliacidal activity of Borrelia metal transporter A (BmtA) binding small molecules by manganese transport inhibition
نویسندگان
چکیده
Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn) for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA), a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 μg/mL (250 μM). Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia.
منابع مشابه
Metal-dependent gene regulation in the causative agent of Lyme disease
Borrelia burgdorferi (Bb) is the causative agent of Lyme disease transmitted to humans by ticks of the Ixodes spp. Bb is a unique bacterial pathogen because it does not require iron (Fe(2+)) for its metabolism. Bb encodes a ferritin-like Dps homolog called NapA (also called BicA), which can bind Fe or copper (Cu(2+)), and a manganese (Mn(2+)) transport protein, Borrelia metal transporter A (Bmt...
متن کاملBorreliacidal antibody production against outer surface protein C of Borrelia burgdorferi.
Early Lyme borreliosis sera with significant titers of anti-outer surface protein C (OspC) borreliacidal antibodies were identified. Human anti-OspC borreliacidal antibodies could be either IgM or IgG. Significant concentrations of borreliacidal activity were detected after vaccination of mice with OspC. Detection of anti-OspC borreliacidal activity was dependent on surface expression of OspC b...
متن کاملOccupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism*
The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with ...
متن کاملManganese and Iron Binding to Human Transferrin
The characteristics of manganese and iron binding to human apotransferrin (apo-tf) have been investigated and compared in this study. Both metal ions were taken up by human apo-tf and formed complexes, with the maximum absorbances observed at 410 and 340 nm for manganese-transferrin (Mn-tf) and 465 nm for iron-transferrin (Fe-tf). Addition of manganese (1.5 µg/ml) to the reaction mixture contai...
متن کاملManganese and Iron Binding to Human Transferrin
The characteristics of manganese and iron binding to human apotransferrin (apo-tf) have been investigated and compared in this study. Both metal ions were taken up by human apo-tf and formed complexes, with the maximum absorbances observed at 410 and 340 nm for manganese-transferrin (Mn-tf) and 465 nm for iron-transferrin (Fe-tf). Addition of manganese (1.5 µg/ml) to the reaction mixture contai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015